

Issue Date: Ref. Report No. August 7, 2012 ISL-12HE227FA

aiwan

We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified. (refer to Test Report if any modifications were made for compliance).

Standards:

FCC CFR Title 47 Part 15 Subpart B: 2010- Section 15.107 and 15.109 ANSI C63.4-2009 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 4: 2004 Class A

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

International Standards Laboratory

Jim Chu / Director

➢ Hsi-Chih LAB:
 No. 65, Gu Dai Keng St., Hsichih District,
 New Taipei City 22179, Taiwan
 Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

FCC TEST REPORT

CFR 47 Part 15 Subpart B Class A

Product : Video Server
Model(s): GV-VS14
Brand Name: GeoVision
Applicant: GeoVision Inc
Address: 9F., No. 246, Sec. 1, Neihu Rd., Neihu District, Taipei City 114, Taiwan

Test Performed by:

International Standards Laboratory

<Hsi-Chih LAB> *Site Registration No. BSMI:SL2-IN-E-0037; SL2-R1/R2-E-0037; TAF: 1178 FCC: TW1067; IC: IC4067A-1; NEMKO: ELA 113A VCCI: <Conduction01>C-354, T-1749, <OATS01>R-341, <Chamber01>G-443 *Address: No. 65, Gu Dai Keng St. Hsichih District, New Taipei City 22179, Taiwan *Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Report No.: ISL-12HE227FA Issue Date : August 7, 2012

This report totally contains 25 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

Contents of Report

1.	General	1
1.1	Certification of Accuracy of Test Data	
1.2	Description of EUT	2
1.3	Description of Support Equipment	3
1.4	Software for Controlling Support Unit	4
1.5	I/O Cable Condition of EUT and Support Units	5
2.	Powerline Conducted Emissions	6
2.1	Test Setup and Procedure	6
2.	.1.1 Test Setup	6
	1.2 Test Procedure	
	.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
2.2		
2.3	Test Setup Photo	9
3.	Radiated Emissions	11
3.1	Test Setup and Procedure	11
	.1.1 Test Setup	
υ.	1.2 Test Procedure	
	1.3 Spectrum Analyzer Configuration (for the frequencies tested)	
3.2	8	
3.3	Test Setup Photo	17
4.	Appendix	19
4.1	Appendix A: Warning Labels	19
4.2	Appendix B: Warning Statement	20
4.3	Appendix C: Test Equipment	21
4.	.3.1 Test Equipment List	
	.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	
4.4	Appendix D: Uncertainty of Measurement	23

1. General

1.1 Certification of Accuracy of Test Data

Standards:	FCC CFR Title 47 Part 15 Subpart B: 2010- Section 15.107 and 15.109 ANSI C63.4-2009 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 4: 2004
Equipment Tested:	Video Server
Model:	GV-VS14
Brand Name:	GeoVision
Applicant:	GeoVision Inc
Sample received Date:	July 26, 2012
Final test Date:	refer to the date of test data
Test Site:	International Standards Laboratory
	OATS 01; Chamber 14; Conduction 01
Test Distance:	10M; 3M (above1GHz)
Temperature:	refer to each site test data
Humidity:	refer to each site test data
Input power:	Conduction input power: AC 120 V / 60 Hz
	Radiation input power: 8/7/2012
Test Result:	PASS
Report Engineer:	Maggy Han
Test Engineer:	Leuis Yu

Louis Yu

Approved By:

Eddy Flsing

1.2 Description of EUT

EUT

Product Name	Video Server
Condition	Pre-Production
Model Number(s)	GV-VS14
Serial Number	N/A
Power Supply	DVE(Model: DSA-42D-12 1 120350)
	AC input: 100-240V ~ 50/60Hz 1.2A
	DC output: 12V, 3.5A
Motherboard	Model: GV-VS14 V1.00
USB 2.0 Port	two 4-pins
I/O Terminal Port	one 16-pins
RJ45 Port(PoE)	one 8-pins (10/100/1000M bps)
BNC-In Port	four
Audio Out Port	one
Audio In Port	two
1 TO 2 Audio Data Cable	two, Non-shielded, Detachable
DC-In Port	one
DC-Out Port	one
1 TO 4 DC Power Cable	one, Shielded, Detachable
Maximum Operating Frequency	810MHz

All types of EUT have been tested. We present the worst case test data (Configurations: 1) in the report. The test configurations are listed below:

Configurations

Configurations	Power Supply
1	DVE(Model: DSA-42D-12 1 120350)
2	RJ45 Port(PoE)

EMI Noise Source

Motherboard Crystal	25MHz (X1), 12MHz (Y1), 32.768KHz (Y4), 54MHz (OSC2)

EMI Solution

Added one core on the Power supply cable

1.3 Description of Support Equipment

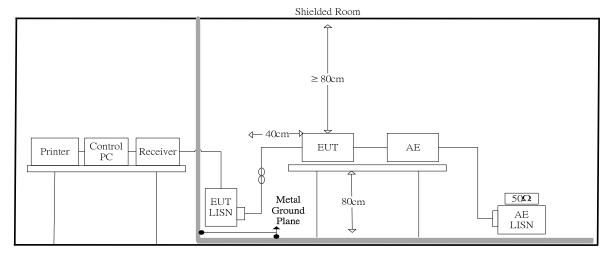
Unit	Model Brand Serial No.		Power Cord	FCC ID
USB2.0 External HDD Enclosure*2	1 HDD RD1000 S/N: NA DELL		Non-shielded, Detachable	FCC DOC
Decoder	AD-300 S/N: AD30000021115-0400	Britz	Non-shielded, Detachable	FCC DOC
Radio Cassette Player	RQ-L11	Panasonic	Non-shielded, Detachable	FCC DOC
DVD Player DVD-NS575P		SONY	Non-shielded, Un-detachable	FCC DOC
Notebook Personal Computer	Latitude D400 S/N: N/A	DELL	Non-shielded, Detachable	FCC DOC
1 to 4 BNC Adapter	N/A	N/A	N/A	N/A
Ethernet PoEFSD-804PSSwitchS/N:A310126000161		PLANET	Non-shielded, Detachable	FCC DOC

1.4 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Receive and transmit package of EUT to the Ethernet PoE Switch HUB through RJ45 port.
- B. Used Tfgen.exe or ping.exe to send signal to EUT RJ45 port through Notebook RJ45 Port.
- C. Used iexplore.exe or Remote Viewlog.exe to R/W USB2.0 External HDD Enclosure through EUT USB2.0 Port.
- D. Send Video signal from DVD Player to EUT through 1 to 4 BNC Adapter
- E. Send audio signal to the Decoder.
- F. Receive audio signal from Radio Cassette Player through EUT Audio In port.
- G. Receive audio signal from DVD Player through EUT Audio In port.
- H. Repeat the above steps.

	Filename	Issued Date
RJ45	Ping.exe	05/05/1999
RJ45	Tfgen.exe	06/23/1999
USB2.0 External HDD Enclosure	iexplore.exe	04/30/2012
USB2.0 External HDD Enclosure	Remote Viewlog.exe	01/16/2012


Description	Path	Cable Length	Cable Type	Connector Type	
AC Power Cord	110V (~240V) to EUT SPS	1.8M	Non-shielded, Detachable	Plastic Head	
BNC Data Cable *4	EUT BNC Port to 1 to 4 BNC Adapter	1M	Shielded, Detachable	Metal Head	
AV Data Cable	DVD Player AV Port to1 to 4 BNC Adapter	1.5M	Non-shielded, Detachable	Metal Head	
Audio Data Cable	EUT Audio Out Port to Decoder	1.5M	Non-shielded, Detachable	Metal Head	
Audio Data Cable	EUT Audio In Port to DVD Player Audio Port	1.5M	Non-shielded, Detachable	Metal Head	
Audio Data Cable	EUT Audio-In Port to Radio Cassette Player	1.5M	Non-shielded, Detachable	Metal Head	
USB2.0 Data Cable*2	USB2.0 External HDD Enclosure USB2.0 Port to EUT USB2.0 Port	2M	Shielded, Detachable (With Core)	Metal Head	
RJ45 Data Cable	EUT RJ-45 Port to PoE Switch HUB RJ45 Port	10M	Non-shielded, Detachable	RJ-45, with Plastic Head	
RJ45 Data Cable	Notebook RJ45 Port to PoE Switch HUB RJ45 Port	1.5M	Non-shielded, Detachable	RJ-45, with Plastic Head	
DC Power Cable	EUT DC-Out Port to dummy	0.24M	Shielded, Detachable	Metal Head	

2. Powerline Conducted Emissions

2.1 Test Setup and Procedure

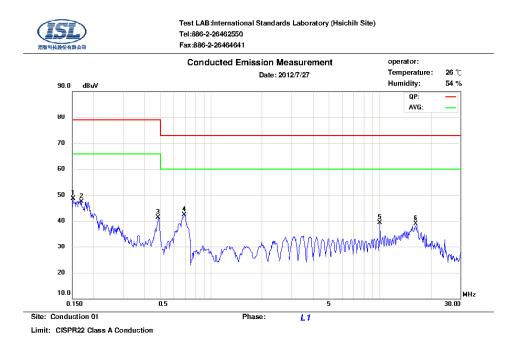
2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a $3.5m \ge 3.4m \ge 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \ge 3m \ge 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m $\ge 1.5m$ table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured.


The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150KHz~30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9KHz

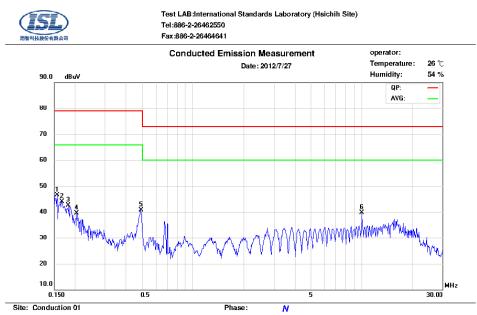
2.2 Conduction Test Data: Configuration 1 Table 2.2.1 Power Line Conducted Emissions (Hot)

No.	Frequency MHz	LISN Loss dB	Cable Loss d B	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
1	0.1517	0.29	0.01	41.26	79.00	-37.74	32.60	66.00	-33.40	
2	0.1696	0.29	0.01	40.13	79.00	-38.87	30.24	66.00	-35.76	
3	0.4832	0.29	0.04	38.90	79.00	-40.10	34.13	66.00	-31.87	
4	0.6980	0.30	0.05	32.53	73.00	-40.47	13.55	60.00	-46.45	
5	10.0000	0.75	0.22	36.29	73.00	-36.71	25.42	60.00	-34.58	
6	16.1750	1.02	0.25	29.95	73.00	-43.05	24.45	60.00	-35.55	

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss


A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

International Standards Laboratory

Table 2.2.2 Power Line Conducted Emissions (Neutral)

Limit: CISPR22 Class A Conduction

No.	Frequency MHz	LISN Loss dB	Cable Loss dB	QP Correct. dBuV	QP Limit dBuV	QP Margin dB	AVG Correct. dBuV	AVG Limit dBuV	AVG Margin dB	Note
1	0.1556	0.13	0.01	34.05	79.00	-44.95	28.16	66.00	-37.84	
2	0.1661	0.13	0.01	38.90	79.00	-40.10	28.43	66.00	-37.57	
3	0.1818	0.13	0.01	34.42	79.00	-44.58	27.87	66.00	-38.13	
4	0.2042	0.13	0.01	33.93	79.00	-45.07	23.21	66.00	-42.79	
5	0.4843	0.14	0.04	38.90	79.00	-40.10	34.11	66.00	-31.89	
6	10.0000	0.52	0.22	38.88	73.00	-34.12	27.87	60.00	-32.13	

Note:

Margin = Corrected Amplitude - Limit

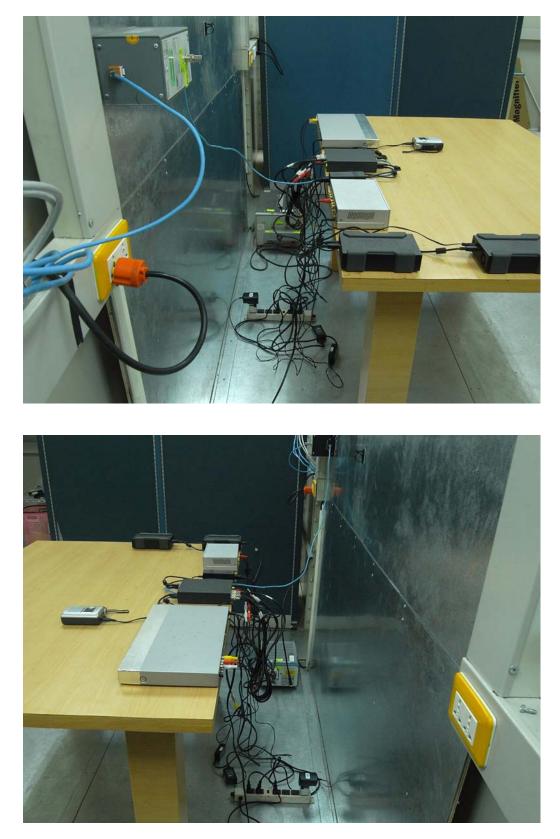
Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

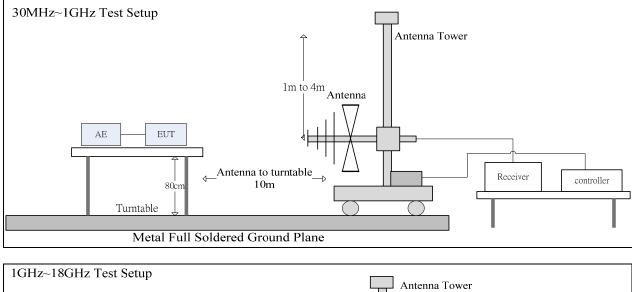
If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

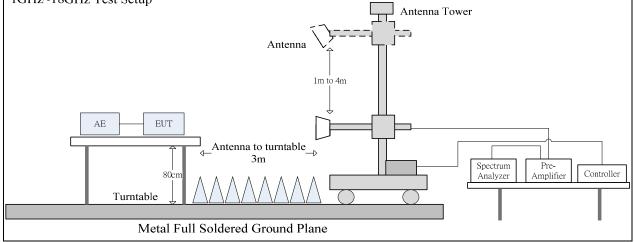
The CISPR 22 limits would be applied to all FCC Part 15 devices.


2.3 Test Setup Photo

Front View

Back View





3. Radiated Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

3.1.2 Test Procedure

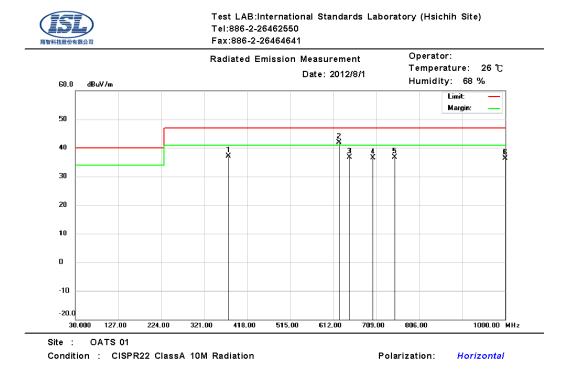
The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a wooden stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 40 GHz were analyzed in details by

International Standards Laboratory

Report Number: ISL-12HE227FA

operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions.


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the antenna in the cone of radiation from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response. At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 6 times the highest frequency or 40 GHz, whichever is less. Spectrum Analyzer Configuration (for the frequencies tested).

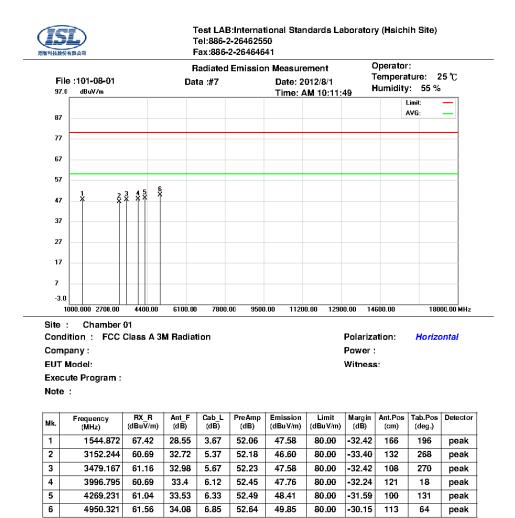
3.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120KHz
Frequency Range:	Above 1000MHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

3.2 Radiation Test Data: Configuration 1 Table 3.2.1 Radiated Emissions (Horizontal)

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	374.4900	20.26	14.94	1.98	0.00	37.18	47.00	-9.82	100	96	QP
2	624.8800	20.20	19.15	2.6	0.00	41.95	47.00	-5.05	128	144	QP
3	648.1300	14.35	19.66	2.66	0.00	36.67	47.00	-10.33	113	267	QP
4	701.3100	13.47	20.21	2.77	0.00	36.45	47.00	-10.55	310	321	QP
5	749.9300	13.28	20.6	2.88	0.00	36.76	47.00	-10.24	264	228	QP
6	1000.0000	9.62	23.3	3.36	0.00	36.28	47.00	-10.72	146	111	QP

* Note:


- Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss Pre-Amplifier Gain
- A margin of -8dB means that the emission is 8dB below the limit
- BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

Margin = Corrected Amplitude – Limit

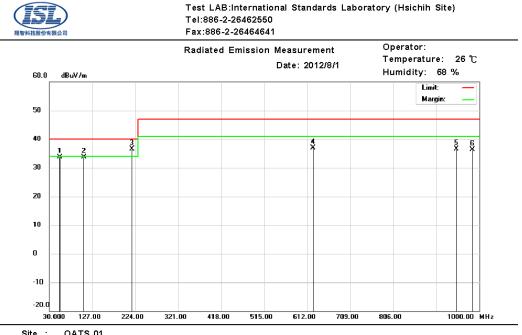
The CISPR 22 limits would be applied to all FCC Part 15 devices.

*:Maximum data x:Over limit !:over margin

* Note:

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain


A margin of -8dB means that the emission is 8dB below the limit

Horn Antenna Distance: 3 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

Table 3.2.2 Radiated Emissions (Vertical)

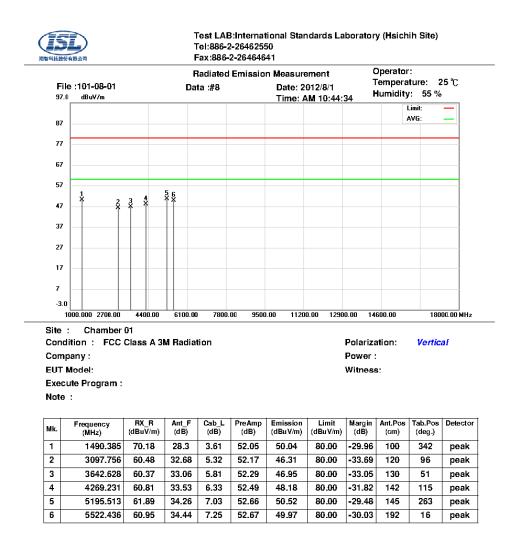
Site : OATS 01 Condition : CISPR22 ClassA 10M Radiation

Polarization: Vertical

Mk.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	53.4100	25.12	7.83	0.75	0.00	33.70	40.00	-6.30	100	199	QP
2	107.9400	20.06	12.59	1.03	0.00	33.68	40.00	-6.32	106	327	QP
3	215.5800	24.34	10.61	1.47	0.00	36.42	40.00	-3.58	307	144	QP
4	624.7600	15.20	19.14	2.6	0.00	36.94	47.00	-10.06	175	211	QP
5	947.8900	10.47	22.78	3.24	0.00	36.49	47.00	-10.51	222	213	QP
6	984.2600	9.93	23.14	3.32	0.00	36.39	47.00	-10.61	134	38	QP

* Note:

Margin = Corrected Amplitude – Limit


Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meters

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

*:Maximum data x:Over limit !:over margin

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

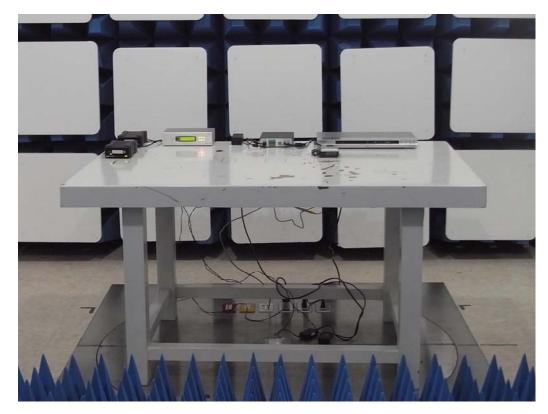
Horn Antenna Distance: 3 meters

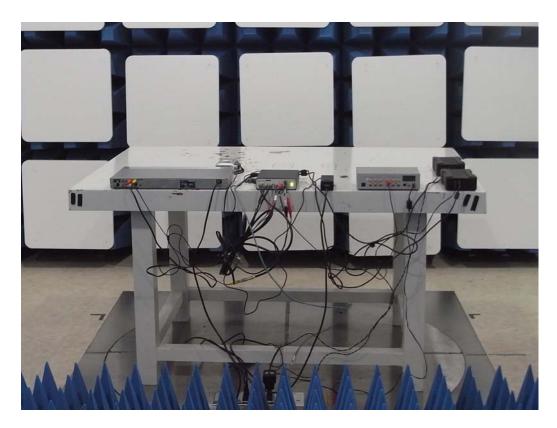
The CISPR 22 limits would be applied to all FCC Part 15 devices.

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

3.3 Test Setup Photo

Front View


Back View


International Standards Laboratory

Front View (above 1GHz)

Back View (above 1GHz)

4. Appendix

4.1 Appendix A: Warning Labels

Label Requirements

A Class A digital device subject to certification by the FCC shall carry a warning label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

4.2 Appendix B: Warning Statement

Statement Requirements

The operators' manual for a Class A digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment generates, uses, and can radiate radio frequency energy and, if not installed and uses in accordance with the instruction manual, may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * * *

If the EUT was tested with special shielded cables the operators manual for such product shall also contain the following statements or their equivalent:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

4.3 Appendix C: Test Equipment

4.3.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
CON01					Date	Date
Conduction	Coaxial Cable 1F-C1	EMEC	5D Cable	1F-C1	10/25/2011	10/25/2012
Conduction	LISN 02	EMCO	3825/2	1407	07/28/2012	07/28/2013
Conduction	LISN 03	R&S	ESH3-Z5 831.5518.52	828874/010	07/28/2012	07/28/2013
Conduction	ISN T2 03	FCC	FCC-TLISN-T 2-02	20618	07/28/2012	07/28/2013
Conduction	ISN T4 05	FCC	FCC-TLISN-T 4-02	20619	07/28/2012	07/28/2013
Conduction	ISN T8 03	FCC	FCC-TLINS-T 8-02	20620	07/28/2012	07/28/2013
Conduction	EMI Receiver 15	ROHDE & SCHWARZ	ESCI	101166	04/24/2012	04/24/2013

Location OATS01	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Radiation	BILOG Antenna 10	Sumol Sciences	JB1	A013004-1	07/18/2012	07/18/2013
Radiation	Coaxial Cable 3F-10M	EMCI	CFD400-NL	ISL-R001	03/16/2012	03/16/2013
Radiation	EMI Receiver 13	ROHDE & SCHWARZ	ESCI	101015	02/22/2012	02/22/2013

Location Chmb14	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Rad. Above 1GHz	Spectrum Analyzer 21 (1G~26.5GHz)	Agilent	N9010A	MY49060537	07/18/2012	07/17/2013
Rad. Above 1GHz	Spectrum Analyzer 22	R&S	FSU43	100143	04/26/2012	04/26/2013
Rad. Above 1GHz	Horn Antenna 06 (1G~18G)	ETS	3117	00066665	09/21/2011	09/20/2012
Rad. Above 1GHz	Horn Antenna 04 (18G~26G)	Com-Power	AH-826	081-001	05/04/2011	05/04/2013
Rad. Above 1GHz	Horn Antenna 05 (26G~40G)	Com-Power	AH-640	100A	01/11/2011	01/10/2013
Rad. Above 1GHz	SUCOFLEX 1GHz~18GHz cable	HUBER SUHNER	Sucoflex 106	67618/6 and 67619/6	02/10/2012	02/10/2013
Rad. Above 1GHz	Preamplifier 13	MITEQ	JS44-0010180 0-25-10P-44	1329256	07/19/2012	07/18/2013
Rad. Above 1GHz	SUCOFLEX 1GHz~40GHz cable	HUBER SUHNER	Sucoflex 102	27963/2&374 21/2	09/21/2011	09/20/2012

4.3.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction	Filename	Version	Issued Date
Hsichih Conduction	EZ EMC	1.1.4.2	2/10/2007
Hsichih Radiation	EZ EMC	1.1.4.2	1/24/2007

4.4 Appendix D: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 01> \pm 3.262dB

<0ATS 01 (10M)> Horizontal 30MHz~200MHz: ±4.216 dB 200MHz~1GHz: ±4.438 dB Vertical 30MHz~200MHz: ±4.342 dB 200MHz~1GHz: ±4.426 dB

<Chamber 14 (3M)> 1GHz~18GHz: ± 3.606dB 18GHz~26GHz: ± 3.618dB